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Abstract New sequencing technologies are providing a

large-scale proliferation of sequence data, including com-

plete mitochondrial genomes as a side effect of target

capture methods. In this study, we use massively parallel

sequencing to provide the nearly complete mitochondrial

genome of the ant Octostruma stenognatha. The annotation

of the genome revealed an interesting pattern that agrees

with a recent deep reorganization in the systematics within

the Formicidae family. This is the first mitogenome for the

genus in a lineage, where the scarcity of mitochondrial

information has restricted our understanding of its evolu-

tionary history. This is a valuable example of the power and

velocity with which products from new sequencing tech-

nologies can increase our capacity to understand

evolutionary biology, especially in non-model species.

Keywords Mitogenome � Ultraconserved elements �
Formicidae � Ants

Introduction

The advent of massively parallel sequencing has provided

unprecedented opportunities to investigate many aspects of

the tree of life (Dunn et al. 2014). Interestingly, in addition

to the availability of information on nuclear genomes, the

nature of many new sequencing methods has also improved

our understanding of traditional sources of molecular

information, such as mitogenomes (Tan et al. 2015).

Mitogenomic sequences have been applied to infer rela-

tionships between organisms as soon they became most

commonly available (e.g., Smith et al. 1993; Boore et al.

1998). The small size of the mitochondrial genome when

compared with the nuclear allows studies involving phylo-

genetics, evolutionary biology, and phylogeography in a

computationally feasible way (e.g., Perseke et al. 2013;

Havird and Santos 2014; Shen et al. 2015). In general,

modifications in mitochondrial gene order are uncommon

(Boore 1999) and rarely display homoplasy (Le et al. 2000).

These observations indicate the possibility of phylogenetic

inferences based on gene order of the mitochondrial gen-

ome, which have been broadly applied in the field (e.g.,

Sankoff et al. 2000; Yuan et al. 2012; Liu et al. 2013).

Mitochondrial genomes have also been shown as a powerful

tool for the reconstruction of high-level phylogenetic rela-

tionship in Hymenoptera (Mao et al. 2015) and as well for

basal inferences in the clade (Song et al. 2016).

The order Hymenoptera includes several clades with

enormous evolutionary success, such as wasps, bees, and

ants, with the latter being a dominant terrestrial taxon since

Cretaceous (Dlussky et al. 2003). Despite their ecological

importance (Hölldobler and Wilson 1990) and economic

impacts (Way and Khoo 1992; Gutrich et al. 2007; Pérez

et al. 2010), only few nuclear and mitochondrial genomes

have been described for the family Formicidae to date (e.g.,

Gotzek et al. 2010; Hasegawa et al. 2011; de Melo Rodo-

valho et al. 2014; Duan et al. 2016; Liu et al. 2016). In this

article, we take advantage of advances in massively parallel

sequencing to provide the first mitogenome of the ant genus

Octostruma using the strategy of assembling the genome
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from captured off-target data. This procedure is well known

to provide accurate information widely in the field from

humans (Picardi and Pesole 2012) to non-model amniotes

(do Amaral et al. 2015). Finally, we interpret the obtained

results in light of recent taxonomic changes in Myrmicinae.

Materials and methods

Total DNA was extracted from a single specimen of

Octostruma stenognatha from Horto Dois Irmãos, Recife,

state of Pernambuco, Brazil (08�0003200S, 34�5604000W).

Voucher specimens from the same nest series are deposited

in the myrmecological collection of the Museu de Zoologia

da Universidade de São Paulo, Brazil. DNA was extracted

using the kit PureLinkTM Genomic DNA (Invitrogen, USA),

and double strand DNA concentration was measured on a

Qubit 2.0 Fluorometer (Life Technologies, Inc.) using the

dsDNA High-Sensitivity Assay Kit. The initial DNA con-

centration for this sample was 0.56 ng/ll. Because of this

low concentration, instead of running a traditional elec-

trophoresis gel, we checked DNA integrity using a

Bioanalyzer (Agilent Technologies), which showed highly

fragmented DNA (possibly because of the age, size, and

preservation of the specimen, which was collected almost

15 years ago). Therefore, the sample was not sheared prior

to library preparation for Illumina sequencing.

The KAPA Hyper prep kit (Kapa Biosystems) and pro-

tocol was chosen to process the Illumina libraries. A bead

technique (Fisher et al. 2011) was used with an alternative

for SPRI beads (Rohland and Reich 2012) in the library

preparation. We used approximately 30 ng of total starting

DNA and all reactions, except PCR, were carried out using

� of volume indicated by the manufacturer (M. Branstetter

pers. com.). The sample was individually labeled using the

iTru dual-indexing adapter system (B. Faircloth and T.

Glenn, pers. com.), which are similar to the TruSeq layout

barcodes (Faircloth and Glenn 2012), and we obtained

4.96 ng/ll of adapter ligated DNA from 16 PCR cycles. A

target enrichment system (Gnirke et al. 2009) was per-

formed to obtain ultraconserved elements (UCEs)

specifically designed for Hymenoptera (Faircloth et al.

2014) using a modified protocol from Faircloth et al. (2012).

We pooled our sample with seven other samples as part of

another study for target enrichment (Ströher et al. unpub-

lished results). The pool was concentrated to 147 ng/ll in a

vacuum centrifuge and later enriched for 1510 UCEs using

manufactured RNA capture probes (MyBaits, Mycroarray,

Inc.) and followed the manufacturer’s indications except for

the on-bead (biotinized) PCR. Two washes were performed

to remove off-target sequences; however, this is not totally

efficient, leaving copies of mitochondrial DNA in the

library. Bioanalyzer (Agilent Technologies) was also used

to measure the size of the enriched material, followed by a

real-time PCR to access the library concentration adopting

the Kapa Library Quantification kit (Kapa Biosystems,

Inc.). The pool was combined with five other pools at

equimolar ratios and sequenced on Illumina HiSeq 2000

sequencer, using 100-bp paired-end reads at the University

of California Santa Cruz, Genome Technology Center.

After sequencing, we used the Illumina bcl2fastq Con-

version Software v1.8.4 to convert BCL files into FASTQ

and to separate multiplexed samples. Sequence quality

control was evaluated using FastQC 0.11.3 (Andrews 2010).

This sample produced a total of 2,823,754 sequences. The

Trimmomatic tool (Lohse et al. 2012), implemented

through Illumiprocessor (Faircloth 2013), was used to

remove low-quality regions, barcodes, and adapters. Phy-

luce (Faircloth 2016) was used to perform the assembly

using the default Trinity tool (Grabherr et al. 2011) gener-

ating 25,820 contigs with mean length of 358 bp. The

resulted contigs were processed with the phyluce workflow

for UCEs analysis using a minimum of 80X coverage and

80% identity. A total of 651 unique UCEs were recovered

for this sample. As predicted in this kind of large-scale

sequencing (Hung et al. 2013), off-target regions are also

captured and sequenced in a sufficient way to produce the

mitochondrial genome in one contig, usually identified as

the longest one. With this result, we performed the mtDNA

genome annotation using MITOS (Bernt et al. 2013) with

the Invertebrate genetic code, and the base composition was

calculated using Geneious 8.1.5 (Kearse et al. 2012). The

DNA sequence is available in GenBank with the accession

number KX758608.

Results and discussion

The mitogenome ofOctostruma stenognatha presented here

for the first time is composed of 37 genes (22 tRNAs, 2

rRNAs, and 13 protein-coding genes), for a total of

14,183 bp without the control region (Fig. 1a). As observed

in other hymenopterans (Wei et al. 2010; Xiao et al. 2011),

the base composition in the mtDNA genome of O. stenog-

natha is highly A ? T-rich, with only 19.4% being G ? C.

This is very similar to the base pair composition found in

another member of Attini tribe, Atta laevigata, where base

composition is 80.8% A ? T (de Melo Rodovalho et al.

2014). InOctostruma stenognatha, 14 genes are encoded by

the minus strand and 23 by the plus strand. Regarding the

absence of the control region, the challenges in sequencing

and assembling this particular part of the mitogenome in

insects are recognized for a long time and appear to be

related with the high A ? T composition allied with repeats

sections (Saito et al. 2005; Cameron et al. 2008). Therefore,

our result is not unpredicted, since other studies were

P. R. Ströher et al.
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specific designed for the sequencing of insects, and mito-

genomes also had no success in recovering the control

region (Mao et al. 2012; Ramakodi et al. 2015).

Although some mitochondrial gene order rearrangement,

especially in tRNAs, can be observed in Hymenoptera

(Dowton and Austin 1999), only a few changes could be

observed in Octostruma stenognatha when compared with

the hypothetical pancrustacean ancestral (Boore et al. 1998)

(Fig. 1b). That is not true in other hymenopterans, such as

wasps, in which the gene order rearrangement is wide-

spread, not only for tRNAs, but also for protein-coding

genes (Xiao et al. 2011). Several models have been sug-

gested to explain how mitochondrial genes are rearranged,

but this issue is still poorly understood (Cameron 2014).

Therefore, when comparing the available ants mitogenomes

with other hymenopterans, the gene arrangement is rela-

tively stable (e.g., Gotzek et al. 2010; Hasegawa et al. 2011;

Berman et al. 2014; de Melo Rodovalho et al. 2014; Yang

et al. 2016) indicating that this can be a characteristic in the

Formicidae family. The position of the trnV gene, after and

not between the ribosomal genes, is unusual when compared

with other ants (Berman et al. 2014; Yang et al. 2016) and

the hypothetical ancestral gene order (Gotzek et al. 2010),

although this feature can be found in some Myrmicine ants

(e.g., Hasegawa et al. 2011; Babbucci et al. 2014) and is not

exclusive to Hymenoptera (Mao et al. 2015). The higher

mobility of tRNAs in relation to other genes is expected,

given that shifts in gene order are not equally frequent

across mitogenomes (Moritz 1987). Although phylogenetic

inference using gene order can be problematic when

homoplasy can occur in the group, this feature can still be

accounted for (Babbucci et al. 2014). An example in

Hymenoptera is the paraphyly and basal position of Sym-

phyta that was recently supported by the use of new

mitochondrial genomes (Song et al. 2016).

A recently proposed new hypothesis for the phylogenetic

relationships within the ant group Myrmicinae (Ward et al.

2014) has challenged some earlier ideas about the evolu-

tionary relationships within the subfamily—the largest

among ants. Based on 11 nuclear genes, Ward et al. (2014)

reduced drastically the number of tribes from 25 to 6. In one

of the most noteworthy changes, the tribe Attini is not

restricted to fungus-growing species, but rather includes

other genera, such as Octostruma. This genus has a long

history of instability in its taxonomy, with its systematic

position being first described as a subgenus of Rhopalothrix

(Forel 1917). Only 30 years later, Octostruma was elevated

to genus (Brown 1948), being subsequently allocated into

the tribe Basicerotini (Brown 1949). The genus remained

stable in that position for more than 50 years, until being

Fig. 1 aMitogenome gene order of Octostruma stenognatha and corresponding strand. b Hypothetical ancestor (Boore et al. 1998). c–f Colored
boxes indicate differences in gene order in relation to the hypothetical ancestor in the indicated species. Single letters refer to tRNAs
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transferred to the tribe Dacetini (Baroni Urbani and De

Andrade 1994). However, Bolton (1994) almost immedi-

ately restored the position of Octostruma within

Basicerotini. In 2007, Baroni Urbani and De Andrade not

only returned Octostruma to Dacetini, but also considered

this genus a junior synonym of Basiceros. This classifica-

tion was not adopted by most of the subsequent authors, so

that Octostruma appears as a valid genus in the paper by

Ward et al. (2014), as it was finally transferred to the tribe

Attini. The fact that Octostruma stenognatha has an iden-

tical mitochondrial gene order as Atta laevigata (de Melo

Rodovalho et al. 2014) corroborates the recent change of the

genus inside the Attini tribe (Ward et al. 2014). In addition,

as a final corroboration that the annotation of the mitogen-

ome was correct, we recovered the place of the trnN gene as

the same as the ancestral, position that is being claimed to be

the ‘‘authentic’’ one for ants with mitogenomes already

sequenced (Babbucci et al. 2014), as opposed to other

findings (Gotzek et al. 2010; Berman et al. 2014). The

Octostruma mitogenome has also high similarity with

another member of the tribe Attini: Wasmannia auropunc-

tata (Duan et al. 2016), the only possible divergence it is an

inversion between the control region and the trnV gene that

cannot be verified in this study.

Conclusions

The recent technological advances are accelerating the

number of mitogenomes available. Using massively parallel

sequencing, we provide here the first mitochondrial genome

for the Octostruma genus. The characteristics of this mito-

genome are very similar to other hymenopterans and

comparing this genome with those of other ants is consistent

with recent taxonomic changes in the Myrmicinae clade.

We expect that soon we will be able to compare genomes

widely in Formicidae, making possible a better under-

standing of the evolutionary history in this family.
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